Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational inequalities associated with the semigroups generated by fractional Kolmogorov operators (2506.14631v1)

Published 17 Jun 2025 in math.AP

Abstract: In this paper we consider fractional Kolmogorov operators defined, in $\mathbb{R}d$, by [\Lambda_\kappa=(-\Delta){\alpha/2}+\frac{\kappa}{|x|\alpha} x\cdot \nabla,] with $\alpha\in (1,2)$, $\alpha<(d+2)/2$ and $\kappa\in \mathbb{R}$. The operator $\Lambda_\alpha$ generates a holomorphic semigroup ${T_t\alpha}_{t>0}$ in $L2(\mathbb{R}d)$ provided that $\kappa<\kappa_c$ where $\kappa_c$ is a critical coupling constant. We establish $Lp$-boundedness properties for the variation operators $V_\rho\left({t\ell\partial_t\ell T_t\alpha}_{t>0}\right)$ with $\rho> 2$, $\ell\in \mathbb{N}$ and $1\vee \frac{d}{\beta}<p<\infty$, where $\beta$ depends on $\kappa$. We also study the behavior of these variation operators in the endpoint $L^{1\vee \frac{d}{\beta}}(\mathbb{R}^d)$ and we prove that $V_2(\{T_t^\alpha\}_{t\>0})$ is not bounded from $Lp(\mathbb{R}d)$ to $L{p,\infty}(\mathbb{R}d)$ for any $1< p<\infty$.

Summary

We haven't generated a summary for this paper yet.