Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $p$-th cyclotomic field and cyclotomic matrices involving Jacobi sums (2506.14316v3)

Published 17 Jun 2025 in math.NT

Abstract: As a complement to our previous article, in this paper we determine the explicit values of $\det\left[J_p(\chi{ki},\chi{kj})\right]_{1\le i,j\le n-1}$ and $\det \left[J_p(\chi{ki},\chi{kj})\right]_{0\le i,j\le n-1}$, where $p$ is a prime, $1\le k<p-1$ is a divisor of $p-1$ with $p-1=kn$, $\chi$ is a generator of the group of all multiplicative characters of $\mathbb{F}p$ and $J_p(\chi{ki},\chi{kj})$ is the Jacobi sum. For example, let $\zeta_p\in\mathbb{C}$ be a primitive $p$-th root of unity and let $P_k(T)$ be the minimal polynomial of $$\theta_k=\sum{x\in\mathbb{F}p,xk=1}\zeta_px$$ over $\mathbb{Q}$. Then we show that $$\det \left[J_p(\chi{ki},\chi{kj})\right]{1\le i,j\le n-1}=(-1){\frac{(k+1)(n2-n)}{2}}\cdot n{n-2}\cdot x_p(k),$$ where $x_p(k)$ is the coefficient of $T$ in $P_k(T)$.

Summary

We haven't generated a summary for this paper yet.