Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

HierVL: Semi-Supervised Segmentation leveraging Hierarchical Vision-Language Synergy with Dynamic Text-Spatial Query Alignment (2506.13925v1)

Published 16 Jun 2025 in cs.CV and cs.AI

Abstract: Semi-supervised semantic segmentation remains challenging under severe label scarcity and domain variability. Vision-only methods often struggle to generalize, resulting in pixel misclassification between similar classes, poor generalization and boundary localization. Vision-LLMs offer robust, domain-invariant semantics but lack the spatial grounding required for dense prediction. We introduce HierVL, a unified framework that bridges this gap by integrating abstract text embeddings into a mask-transformer architecture tailored for semi-supervised segmentation. HierVL features three novel components: a Hierarchical Semantic Query Generator that filters and projects abstract class embeddings into multi-scale queries to suppress irrelevant classes and handle intra-class variability; a Cross-Modal Spatial Alignment Module that aligns semantic queries with pixel features for sharper boundaries under sparse supervision; and a Dual-Query Transformer Decoder that fuses semantic and instance-level queries to prevent instance collapse. We also introduce targeted regularization losses that maintain vision-language alignment throughout training to reinforce semantic grounding. HierVL establishes a new state-of-the-art by achieving a +4.4% mean improvement of the intersection over the union on COCO (with 232 labeled images), +3.1% on Pascal VOC (with 92 labels), +5.9% on ADE20 (with 158 labels) and +1.8% on Cityscapes (with 100 labels), demonstrating better performance under 1% supervision on four benchmark datasets. Our results show that language-guided segmentation closes the label efficiency gap and unlocks new levels of fine-grained, instance-aware generalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.