Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UniDet-D: A Unified Dynamic Spectral Attention Model for Object Detection under Adverse Weathers (2506.12324v1)

Published 14 Jun 2025 in cs.CV

Abstract: Real-world object detection is a challenging task where the captured images/videos often suffer from complex degradations due to various adverse weather conditions such as rain, fog, snow, low-light, etc. Despite extensive prior efforts, most existing methods are designed for one specific type of adverse weather with constraints of poor generalization, under-utilization of visual features while handling various image degradations. Leveraging a theoretical analysis on how critical visual details are lost in adverse-weather images, we design UniDet-D, a unified framework that tackles the challenge of object detection under various adverse weather conditions, and achieves object detection and image restoration within a single network. Specifically, the proposed UniDet-D incorporates a dynamic spectral attention mechanism that adaptively emphasizes informative spectral components while suppressing irrelevant ones, enabling more robust and discriminative feature representation across various degradation types. Extensive experiments show that UniDet-D achieves superior detection accuracy across different types of adverse-weather degradation. Furthermore, UniDet-D demonstrates superior generalization towards unseen adverse weather conditions such as sandstorms and rain-fog mixtures, highlighting its great potential for real-world deployment.

Summary

We haven't generated a summary for this paper yet.