Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

The Cambrian Explosion of Mixed-Precision Matrix Multiplication for Quantized Deep Learning Inference (2506.11728v1)

Published 13 Jun 2025 in cs.CL

Abstract: Recent advances in deep learning (DL) have led to a shift from traditional 64-bit floating point (FP64) computations toward reduced-precision formats, such as FP16, BF16, and 8- or 16-bit integers, combined with mixed-precision arithmetic. This transition enhances computational throughput, reduces memory and bandwidth usage, and improves energy efficiency, offering significant advantages for resource-constrained edge devices. To support this shift, hardware architectures have evolved accordingly, now including adapted ISAs (Instruction Set Architectures) that expose mixed-precision vector units and matrix engines tailored for DL workloads. At the heart of many DL and scientific computing tasks is the general matrix-matrix multiplication gemm, a fundamental kernel historically optimized using axpy vector instructions on SIMD (single instruction, multiple data) units. However, as hardware moves toward mixed-precision dot-product-centric operations optimized for quantized inference, these legacy approaches are being phased out. In response to this, our paper revisits traditional high-performance gemm and describes strategies for adapting it to mixed-precision integer (MIP) arithmetic across modern ISAs, including x86_64, ARM, and RISC-V. Concretely, we illustrate novel micro-kernel designs and data layouts that better exploit today's specialized hardware and demonstrate significant performance gains from MIP arithmetic over floating-point implementations across three representative CPU architectures. These contributions highlight a new era of gemm optimization-driven by the demands of DL inference on heterogeneous architectures, marking what we term as the "Cambrian period" for matrix multiplication.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.