Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Probability Convergence of Distributed Clipped Stochastic Gradient Descent with Heavy-tailed Noise (2506.11647v2)

Published 13 Jun 2025 in math.OC

Abstract: In this paper, the problem of distributed optimization is studied via a network of agents. Each agent only has access to a noisy gradient of its own objective function, and can communicate with its neighbors via a network. To handle this problem, a distributed clipped stochastic gradient descent algorithm is proposed, and the high probability convergence of the algorithm is studied. Existing works on distributed algorithms involving stochastic gradients only consider the light-tailed noises. Different from them, we study the case with heavy-tailed settings. Under mild assumptions on the graph connectivity, we prove that the algorithm converges in high probability under a certain clipping operator. Finally, a simulation is provided to demonstrate the effectiveness of our theoretical results

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com