Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Group Robustness on Spurious Correlation via Evidential Alignment (2506.11347v2)

Published 12 Jun 2025 in cs.LG

Abstract: Deep neural networks often learn and rely on spurious correlations, i.e., superficial associations between non-causal features and the targets. For instance, an image classifier may identify camels based on the desert backgrounds. While it can yield high overall accuracy during training, it degrades generalization on more diverse scenarios where such correlations do not hold. This problem poses significant challenges for out-of-distribution robustness and trustworthiness. Existing methods typically mitigate this issue by using external group annotations or auxiliary deterministic models to learn unbiased representations. However, such information is costly to obtain, and deterministic models may fail to capture the full spectrum of biases learned by the models. To address these limitations, we propose Evidential Alignment, a novel framework that leverages uncertainty quantification to understand the behavior of the biased models without requiring group annotations. By quantifying the evidence of model prediction with second-order risk minimization and calibrating the biased models with the proposed evidential calibration technique, Evidential Alignment identifies and suppresses spurious correlations while preserving core features. We theoretically justify the effectiveness of our method as capable of learning the patterns of biased models and debiasing the model without requiring any spurious correlation annotations. Empirical results demonstrate that our method significantly improves group robustness across diverse architectures and data modalities, providing a scalable and principled solution to spurious correlations.

Summary

We haven't generated a summary for this paper yet.