Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prompt Attacks Reveal Superficial Knowledge Removal in Unlearning Methods (2506.10236v1)

Published 11 Jun 2025 in cs.CR, cs.AI, cs.CL, cs.CY, and cs.LG

Abstract: In this work, we show that some machine unlearning methods may fail when subjected to straightforward prompt attacks. We systematically evaluate eight unlearning techniques across three model families, and employ output-based, logit-based, and probe analysis to determine to what extent supposedly unlearned knowledge can be retrieved. While methods like RMU and TAR demonstrate robust unlearning, ELM remains vulnerable to specific prompt attacks (e.g., Hindi filler text in original prompt recovering 57.3% accuracy). Our logit analysis also confirms that unlearned models are generally not hiding knowledge by modifying the way the answer is formatted, as the correlation between output and logit accuracy is strong. These results challenge prevailing assumptions about unlearning effectiveness and highlight the need for evaluation frameworks that can reliably distinguish between true knowledge removal and superficial output suppression. We also publicly make available our evaluation framework to easily evaluate prompting techniques to retrieve unlearning knowledge.

Summary

We haven't generated a summary for this paper yet.