Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Supervised Fine-Tuning for Large Language Models to Mitigate Catastrophic Forgetting (2506.09428v2)

Published 11 Jun 2025 in cs.CL and cs.AI

Abstract: Supervised Fine-Tuning (SFT) is a critical step for enhancing the instruction-following capabilities of LLMs and adapting them to specialized domains. However, SFT often leads to a degradation of the model's general abilities, a phenomenon known as catastrophic forgetting. This problem is exacerbated when third-party practitioners fine-tune open-source models, as the original SFT data is typically not available. To address this challenge, we propose a novel and cost-effective SFT method that effectively mitigates catastrophic forgetting without requiring access to the original SFT data. Our approach first reconstructs the likely instruction distribution of the base model. It then employs a multi-model generation and filtering pipeline to synthesize a high-quality general-purpose dataset. This synthetic dataset is mixed with new, domain-specific data for fine-tuning. Experimental results show that our method not only preserves the model's capabilities in general domains but also improves task-specific performance, outperforming baselines that use publicly available SFT datasets.

Summary

We haven't generated a summary for this paper yet.