Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing the Impact of Refactoring Energy-Inefficient Code Patterns on Software Sustainability: An Industry Case Study (2506.09370v1)

Published 11 Jun 2025 in cs.SE

Abstract: Advances in technologies like artificial intelligence and metaverse have led to a proliferation of software systems in business and everyday life. With this widespread penetration, the carbon emissions of software are rapidly growing as well, thereby negatively impacting the long-term sustainability of our environment. Hence, optimizing software from a sustainability standpoint becomes more crucial than ever. We believe that the adoption of automated tools that can identify energy-inefficient patterns in the code and guide appropriate refactoring can significantly assist in this optimization. In this extended abstract, we present an industry case study that evaluates the sustainability impact of refactoring energy-inefficient code patterns identified by automated software sustainability assessment tools for a large application. Preliminary results highlight a positive impact on the application's sustainability post-refactoring, leading to a 29% decrease in per-user per-month energy consumption.

Summary

We haven't generated a summary for this paper yet.