Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paths to Causality: Finding Informative Subgraphs Within Knowledge Graphs for Knowledge-Based Causal Discovery (2506.08771v1)

Published 10 Jun 2025 in cs.AI, cs.CL, cs.IR, and cs.LG

Abstract: Inferring causal relationships between variable pairs is crucial for understanding multivariate interactions in complex systems. Knowledge-based causal discovery -- which involves inferring causal relationships by reasoning over the metadata of variables (e.g., names or textual context) -- offers a compelling alternative to traditional methods that rely on observational data. However, existing methods using LLMs often produce unstable and inconsistent results, compromising their reliability for causal inference. To address this, we introduce a novel approach that integrates Knowledge Graphs (KGs) with LLMs to enhance knowledge-based causal discovery. Our approach identifies informative metapath-based subgraphs within KGs and further refines the selection of these subgraphs using Learning-to-Rank-based models. The top-ranked subgraphs are then incorporated into zero-shot prompts, improving the effectiveness of LLMs in inferring the causal relationship. Extensive experiments on biomedical and open-domain datasets demonstrate that our method outperforms most baselines by up to 44.4 points in F1 scores, evaluated across diverse LLMs and KGs. Our code and datasets are available on GitHub: https://github.com/susantiyuni/path-to-causality

Summary

We haven't generated a summary for this paper yet.