Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SDE-SQL: Enhancing Text-to-SQL Generation in Large Language Models via Self-Driven Exploration with SQL Probes (2506.07245v2)

Published 8 Jun 2025 in cs.CL and cs.AI

Abstract: Recent advancements in LLMs have significantly improved performance on the Text-to-SQL task. However, prior approaches typically rely on static, pre-processed database information provided at inference time, which limits the model's ability to fully understand the database contents. Without dynamic interaction, LLMs are constrained to fixed, human-provided context and cannot autonomously explore the underlying data. To address this limitation, we propose SDE-SQL, a framework that enables LLMs to perform self-driven exploration of databases during inference. This is accomplished by generating and executing SQL probes, which allow the model to actively retrieve information from the database and iteratively update its understanding of the data. Unlike prior methods, SDE-SQL operates in a zero-shot setting, without relying on any question-SQL pairs as in-context demonstrations. When evaluated on the BIRD benchmark with Qwen2.5-72B-Instruct, SDE-SQL achieves an 8.02% relative improvement in execution accuracy over the vanilla Qwen2.5-72B-Instruct baseline, establishing a new state-of-the-art among methods based on open-source models without supervised fine-tuning (SFT) or model ensembling. Moreover, with SFT, the performance of SDE-SQL can be further enhanced, yielding an additional 0.52% improvement.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com