Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantization commutes with reduction for coisotropic A-branes (2506.06859v1)

Published 7 Jun 2025 in math.SG, math-ph, math.DG, and math.MP

Abstract: On a Hamiltonian $G$-manifold $X$, we define the notion of $G$-invariance of coisotropic A-branes $\mathcal{B}$. Under neat assumptions, we give a Marsden-Weinstein-Meyer type construction of a coisotropic A-brane $\mathcal{B}{\operatorname{red}}$ on $X // G$ from $\mathcal{B}$, recovering the usual construction when $\mathcal{B}$ is Lagrangian. For a canonical coisotropic A-brane $\mathcal{B}{\operatorname{cc}}$ on a holomorphic Hamiltonian $G_\mathbb{C}$-manifold $X$, there is a fibration of $(\mathcal{B}{\operatorname{cc}}){\operatorname{red}}$ over $X // G_\mathbb{C}$. We also show that intersections of A-branes commute with reduction'. When $X = T^*M$ for $M$ being compact K\"ahler with a Hamiltonian $G$-action, Guillemin-Sternbergquantization commutes with reduction' theorem can be interpreted as $\operatorname{Hom}{X // G}(\mathcal{B}{\operatorname{red}}, (\mathcal{B}{\operatorname{cc}}){\operatorname{red}}) \cong \operatorname{Hom}X(\mathcal{B}, \mathcal{B}{\operatorname{cc}})G$ with $\mathcal{B} = M$.

Summary

We haven't generated a summary for this paper yet.