Quantization commutes with reduction for coisotropic A-branes (2506.06859v1)
Abstract: On a Hamiltonian $G$-manifold $X$, we define the notion of $G$-invariance of coisotropic A-branes $\mathcal{B}$. Under neat assumptions, we give a Marsden-Weinstein-Meyer type construction of a coisotropic A-brane $\mathcal{B}{\operatorname{red}}$ on $X // G$ from $\mathcal{B}$, recovering the usual construction when $\mathcal{B}$ is Lagrangian. For a canonical coisotropic A-brane $\mathcal{B}{\operatorname{cc}}$ on a holomorphic Hamiltonian $G_\mathbb{C}$-manifold $X$, there is a fibration of $(\mathcal{B}{\operatorname{cc}}){\operatorname{red}}$ over $X // G_\mathbb{C}$. We also show that intersections of A-branes commute with reduction'. When $X = T^*M$ for $M$ being compact K\"ahler with a Hamiltonian $G$-action, Guillemin-Sternberg
quantization commutes with reduction' theorem can be interpreted as $\operatorname{Hom}{X // G}(\mathcal{B}{\operatorname{red}}, (\mathcal{B}{\operatorname{cc}}){\operatorname{red}}) \cong \operatorname{Hom}X(\mathcal{B}, \mathcal{B}{\operatorname{cc}})G$ with $\mathcal{B} = M$.