Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness of Fractional Stochastic p-Laplace Equations Driven by Superlinear Transport Noise (2506.06766v1)

Published 7 Jun 2025 in math.PR and math.AP

Abstract: In this paper, we prove the existence and uniqueness of solutions of the fractional p-Laplace equation with a polynomial drift of arbitrary order driven by superlinear transport noise. By the monotone argument, we first prove the existence and uniqueness of solutions of an abstract stochastic differential equation satisfying a fully local monotonicity condition. We then apply the abstract result to the fractional stochastic p-Laplace equation defined in a bounded domain. The main difficulty is to establish the tightness as well as the uniform integrability of a sequence of approximate solutions defined by the Galerkin method. To obtain the necessary uniform estimates, we employ the Skorokhod-Jakubowski representation theorem on a topological space instead of a metric space. Since the strong Skorokhod representation theorem is incorrect even in a complete separable metric space, we pass to the limit of stochastic integrals with respect to a sequence of Wiener processes by a weak convergence argument.

Summary

We haven't generated a summary for this paper yet.