Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking Early Agitation Prediction in Community-Dwelling People with Dementia Using Multimodal Sensors and Machine Learning (2506.06306v1)

Published 23 May 2025 in eess.SP, cs.CV, cs.HC, and cs.LG

Abstract: Agitation is one of the most common responsive behaviors in people living with dementia, particularly among those residing in community settings without continuous clinical supervision. Timely prediction of agitation can enable early intervention, reduce caregiver burden, and improve the quality of life for both patients and caregivers. This study aimed to develop and benchmark machine learning approaches for the early prediction of agitation in community-dwelling older adults with dementia using multimodal sensor data. A new set of agitation-related contextual features derived from activity data was introduced and employed for agitation prediction. A wide range of machine learning and deep learning models was evaluated across multiple problem formulations, including binary classification for single-timestamp tabular sensor data and multi-timestamp sequential sensor data, as well as anomaly detection for single-timestamp tabular sensor data. The study utilized the Technology Integrated Health Management (TIHM) dataset, the largest publicly available dataset for remote monitoring of people living with dementia, comprising 2,803 days of in-home activity, physiology, and sleep data. The most effective setting involved binary classification of sensor data using the current 6-hour timestamp to predict agitation at the subsequent timestamp. Incorporating additional information, such as time of day and agitation history, further improved model performance, with the highest AUC-ROC of 0.9720 and AUC-PR of 0.4320 achieved by the light gradient boosting machine. This work presents the first comprehensive benchmarking of state-of-the-art techniques for agitation prediction in community-based dementia care using privacy-preserving sensor data. The approach enables accurate, explainable, and efficient agitation prediction, supporting proactive dementia care and aging in place.

Summary

We haven't generated a summary for this paper yet.