Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainability in Context: A Multilevel Framework Aligning AI Explanations with Stakeholder with LLMs (2506.05887v1)

Published 6 Jun 2025 in cs.AI

Abstract: The growing application of artificial intelligence in sensitive domains has intensified the demand for systems that are not only accurate but also explainable and trustworthy. Although explainable AI (XAI) methods have proliferated, many do not consider the diverse audiences that interact with AI systems: from developers and domain experts to end-users and society. This paper addresses how trust in AI is influenced by the design and delivery of explanations and proposes a multilevel framework that aligns explanations with the epistemic, contextual, and ethical expectations of different stakeholders. The framework consists of three layers: algorithmic and domain-based, human-centered, and social explainability. We highlight the emerging role of LLMs in enhancing the social layer by generating accessible, natural language explanations. Through illustrative case studies, we demonstrate how this approach facilitates technical fidelity, user engagement, and societal accountability, reframing XAI as a dynamic, trust-building process.

Summary

We haven't generated a summary for this paper yet.