Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Jumps for Option Pricing (2506.05137v1)

Published 5 Jun 2025 in q-fin.GN

Abstract: Recognizing the importance of jump risk in option pricing, we propose a neural jump stochastic differential equation model in this paper, which integrates neural networks as parameter estimators in the conventional jump diffusion model. To overcome the problem that the backpropagation algorithm is not compatible with the jump process, we use the Gumbel-Softmax method to make the jump parameter gradient learnable. We examine the proposed model using both simulated data and S&P 500 index options. The findings demonstrate that the incorporation of neural jump components substantially improves the accuracy of pricing compared to existing benchmark models.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com