Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

TextVidBench: A Benchmark for Long Video Scene Text Understanding (2506.04983v1)

Published 5 Jun 2025 in cs.CV

Abstract: Despite recent progress on the short-video Text-Visual Question Answering (ViteVQA) task - largely driven by benchmarks such as M4-ViteVQA - existing datasets still suffer from limited video duration and narrow evaluation scopes, making it difficult to adequately assess the growing capabilities of powerful multimodal LLMs (MLLMs). To address these limitations, we introduce TextVidBench, the first benchmark specifically designed for long-video text question answering (>3 minutes). TextVidBench makes three key contributions: 1) Cross-domain long-video coverage: Spanning 9 categories (e.g., news, sports, gaming), with an average video length of 2306 seconds, enabling more realistic evaluation of long-video understanding. 2) A three-stage evaluation framework: "Text Needle-in-Haystack -> Temporal Grounding -> Text Dynamics Captioning". 3) High-quality fine-grained annotations: Containing over 5,000 question-answer pairs with detailed semantic labeling. Furthermore, we propose an efficient paradigm for improving large models through: (i) introducing the IT-Rope mechanism and temporal prompt engineering to enhance temporal perception, (ii) adopting non-uniform positional encoding to better handle long video sequences, and (iii) applying lightweight fine-tuning on video-text data. Extensive experiments on multiple public datasets as well as TextVidBench demonstrate that our new benchmark presents significant challenges to existing models, while our proposed method offers valuable insights into improving long-video scene text understanding capabilities.

Summary

We haven't generated a summary for this paper yet.