Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed lag non-linear models with Laplacian-P-splines for analysis of spatially structured time series (2506.04814v1)

Published 5 Jun 2025 in stat.ME

Abstract: Distributed lag non-linear models (DLNM) have gained popularity for modeling nonlinear lagged relationships between exposures and outcomes. When applied to spatially referenced data, these models must account for spatial dependence, a challenge that has yet to be thoroughly explored within the penalized DLNM framework. This gap is mainly due to the complex model structure and high computational demands, particularly when dealing with large spatio-temporal datasets. To address this, we propose a novel Bayesian DLNM-Laplacian-P-splines (DLNM-LPS) approach that incorporates spatial dependence using conditional autoregressive (CAR) priors, a method commonly applied in disease mapping. Our approach offers a flexible framework for capturing nonlinear associations while accounting for spatial dependence. It uses the Laplace approximation to approximate the conditional posterior distribution of the regression parameters, eliminating the need for Markov chain Monte Carlo (MCMC) sampling, often used in Bayesian inference, thus improving computational efficiency. The methodology is evaluated through simulation studies and applied to analyze the relationship between temperature and mortality in London.

Summary

We haven't generated a summary for this paper yet.