Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdaDecode: Accelerating LLM Decoding with Adaptive Layer Parallelism (2506.03700v1)

Published 4 Jun 2025 in cs.CL

Abstract: LLMs are increasingly used for long-content generation (e.g., long Chain-of-Thought reasoning) where decoding efficiency becomes a critical bottleneck: Autoregressive decoding is inherently limited by its sequential token generation process, where each token must be generated before the next can be processed. This sequential dependency restricts the ability to fully leverage modern hardware's parallel processing capabilities. Existing methods like speculative decoding and layer skipping offer potential speedups but have notable drawbacks: speculative decoding relies on an auxiliary "drafter" model, which can be challenging to acquire and increases memory overhead, while layer skipping may introduce discrepancies in the outputs due to the missing key-value cache at skipped layers. In this work, we propose AdaDecode, which accelerates LLM decoding without requiring auxiliary models or changes to the original model parameters, while ensuring output consistency. AdaDecode leverages the insight that many tokens can accurately be generated at intermediate layers, as further layers often do not significantly alter predictions once the model reaches a certain confidence. By adaptively generating tokens at intermediate layers when confidence is high, AdaDecode enables the next token's computation to begin immediately. The remaining layer computations for early-predicted tokens are deferred and executed in parallel with subsequent tokens when needed, maximizing hardware utilization and reducing decoding latency. A final verification step ensures that early predictions match the results of standard autoregressive decoding, preserving output parity. Experiments across diverse generation tasks shows that AdaDecode consistently achieves superior decoding throughput with up to 1.73x speedup, while guaranteeing output parity with standard autoregressive decoding.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com