Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics and Computing Performance of the EggNet Tracking Pipeline (2506.03415v1)

Published 3 Jun 2025 in physics.data-an, hep-ex, and hep-ph

Abstract: Particle track reconstruction is traditionally computationally challenging due to the combinatorial nature of the tracking algorithms employed. Recent developments have focused on novel algorithms with graph neural networks (GNNs), which can improve scalability. While most of these GNN-based methods require an input graph to be constructed before performing message passing, a one-shot approach called EggNet that directly takes detector spacepoints as inputs and iteratively apply graph attention networks with an evolving graph structure has been proposed. The graphs are gradually updated to improve the edge efficiency and purity, thus providing a better model performance. In this work, we evaluate the physics and computing performance of the EggNet tracking pipeline on the full TrackML dataset. We also explore different techniques to reduce constraints on computation memory and computing time.

Summary

We haven't generated a summary for this paper yet.