Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Learning in Vision-Language Models via Aligned Model Merging (2506.03189v1)

Published 30 May 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Continual learning is conventionally tackled through sequential fine-tuning, a process that, while enabling adaptation, inherently favors plasticity over the stability needed to retain prior knowledge. While existing approaches attempt to mitigate catastrophic forgetting, a bias towards recent tasks persists as they build upon this sequential nature. In this work we present a new perspective based on model merging to maintain stability while still retaining plasticity. Rather than just sequentially updating the model weights, we propose merging newly trained task parameters with previously learned ones, promoting a better balance. To maximize the effectiveness of the merging process, we propose a simple mechanism that promotes learning aligned weights with previous ones, thereby avoiding interference when merging. We evaluate this approach on large Vision-LLMs (VLMs), and demonstrate its effectiveness in reducing forgetting, increasing robustness to various task orders and similarities, and improving generalization.

Summary

We haven't generated a summary for this paper yet.