2000 character limit reached
Various irrational series involving binomial coefficients (2506.01870v5)
Published 2 Jun 2025 in math.NT
Abstract: Motivated by Galois theory, we propose 26 new irrational series of Ramanujan's type or Zeilberger's type. For example, we conjecture that \begin{align*}&\sum_{k=1}\infty\frac{(32(91\sqrt{33}-523)){k}}{k3\binom{2k}k2\binom{3k}k} \left((91\sqrt{33}+891)k-33\sqrt{33}-225\right) \&\qquad=320\left(\frac{11}3\sqrt{33}L_{-11}(2)-27L_{-3}(2)\right), \end{align*} where $$ L_{d}(2)=\sum_{k=1}\infty\frac{(\frac{d}k)}{k2}$$ for any integer $d\equiv0,1\pmod4$ with $(\frac{d}k)$ the Kronecker symbol. This provides a quite efficient way to compute the constant $L_{-11}(2)$.