Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Various irrational series involving binomial coefficients (2506.01870v5)

Published 2 Jun 2025 in math.NT

Abstract: Motivated by Galois theory, we propose 26 new irrational series of Ramanujan's type or Zeilberger's type. For example, we conjecture that \begin{align*}&\sum_{k=1}\infty\frac{(32(91\sqrt{33}-523)){k}}{k3\binom{2k}k2\binom{3k}k} \left((91\sqrt{33}+891)k-33\sqrt{33}-225\right) \&\qquad=320\left(\frac{11}3\sqrt{33}L_{-11}(2)-27L_{-3}(2)\right), \end{align*} where $$ L_{d}(2)=\sum_{k=1}\infty\frac{(\frac{d}k)}{k2}$$ for any integer $d\equiv0,1\pmod4$ with $(\frac{d}k)$ the Kronecker symbol. This provides a quite efficient way to compute the constant $L_{-11}(2)$.

Summary

We haven't generated a summary for this paper yet.