Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Hasse principle for homogeneous polynomials with random coefficients over thin sets II (2506.01291v2)

Published 2 Jun 2025 in math.NT and math.AG

Abstract: Let $d$ and $n$ be natural numbers. Let $\nu_{d,n}: \mathbb{R}n\rightarrow \mathbb{R}{N}$ denote the Veronese embedding with $N=N_{n,d}:=\binom{n+d-1}{d}$, defined by listing all the monomials of degree $d$ in $n$ variables using the lexicographical ordering. Let $\langle \boldsymbol{a}, \nu_{d,n}(\boldsymbol{x})\rangle\in \mathbb{Z}[\boldsymbol{x}]$ be a homogeneous polynomial in $n$ variables of degree $d$ with integer coefficients $\boldsymbol{a}$, where $\langle\cdot,\cdot\rangle$ denotes the inner product. For a non-singular form $P\in \mathbb{Z}[\boldsymbol{x}]$ of degree $k\ (\leq d)$ in $N$ variables, consider a set of integer vectors $\boldsymbol{a}\in \mathbb{Z}N$, defined by $$\mathfrak{A}(A;P)={\boldsymbol{a}\in \mathbb{Z}N:\ P(\boldsymbol{a})=0,\ |\boldsymbol{a}|{\infty}\leq A}.$$ By handling a new lattice problem via the geometry of numbers, we confirm that whenever $n> 24d$ and $d\geq 17,$ the proportion of integer coefficients $\boldsymbol{a}\in \mathfrak{A}(A;P)$, whose associated equation $f{\boldsymbol{a}}(\boldsymbol{x})=0$ satisfies the Hasse principle, converges to $1$ as $A\rightarrow\infty$. This improves on the recent work of the second author.

Summary

We haven't generated a summary for this paper yet.