Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

XGUARD: A Graded Benchmark for Evaluating Safety Failures of Large Language Models on Extremist Content (2506.00973v1)

Published 1 Jun 2025 in cs.CL

Abstract: LLMs can generate content spanning ideological rhetoric to explicit instructions for violence. However, existing safety evaluations often rely on simplistic binary labels (safe and unsafe), overlooking the nuanced spectrum of risk these outputs pose. To address this, we present XGUARD, a benchmark and evaluation framework designed to assess the severity of extremist content generated by LLMs. XGUARD includes 3,840 red teaming prompts sourced from real world data such as social media and news, covering a broad range of ideologically charged scenarios. Our framework categorizes model responses into five danger levels (0 to 4), enabling a more nuanced analysis of both the frequency and severity of failures. We introduce the interpretable Attack Severity Curve (ASC) to visualize vulnerabilities and compare defense mechanisms across threat intensities. Using XGUARD, we evaluate six popular LLMs and two lightweight defense strategies, revealing key insights into current safety gaps and trade-offs between robustness and expressive freedom. Our work underscores the value of graded safety metrics for building trustworthy LLMs.

Summary

We haven't generated a summary for this paper yet.