Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing LLM Reasoning for Time Series Classification by Tailored Thinking and Fused Decision (2506.00807v1)

Published 1 Jun 2025 in cs.AI

Abstract: The reasoning capabilities of LLMs have significantly advanced their performance by enabling in-depth understanding of diverse tasks. With growing interest in applying LLMs to the time series domain, this has proven nontrivial, as evidenced by the limited efficacy of straightforwardly adapting text-domain reasoning techniques. Although recent work has shown promise in several time series tasks, further leveraging advancements in LLM reasoning remains under-explored for time series classification (TSC) tasks, despite their prevalence and significance in many real-world applications. In this paper, we propose ReasonTSC, a novel framework designed to effectively leverage LLM reasoning for time series classification through both a multi-turn reasoning and a fused decision-making strategy tailored to TSC. Rather than straightforwardly applying existing reasoning techniques or relying solely on LLMs' built-in reasoning capabilities, ReasonTSC first steers the model to think over the essential characteristics of time series data. Next, it integrates predictions and confidence scores from plug-in classifiers, e.g., domain-specific time series models, as in-context examples. Finally, ReasonTSC guides the LLM through a structured reasoning process: it evaluates the initial assessment, backtracks to consider alternative hypotheses, and compares their merits before arriving at a final classification. Extensive experiments and systematic ablation studies demonstrate that ReasonTSC consistently outperforms both existing time series reasoning baselines and plug-in models, and is even capable of identifying and correcting plug-in models' false predictions.

Summary

We haven't generated a summary for this paper yet.