Adaptive-VP: A Framework for LLM-Based Virtual Patients that Adapts to Trainees' Dialogue to Facilitate Nurse Communication Training (2506.00386v1)
Abstract: Effective communication training is essential to preparing nurses for high-quality patient care. While standardized patient (SP) simulations provide valuable experiential learning, they are often costly and inflexible. Virtual patient (VP) systems offer a scalable alternative, but most fail to adapt to the varying communication skills of trainees. In particular, when trainees respond ineffectively, VPs should escalate in hostility or become uncooperative--yet this level of adaptive interaction remains largely unsupported. To address this gap, we introduce Adaptive-VP, a VP dialogue generation framework that leverages LLMs to dynamically adapt VP behavior based on trainee input. The framework features a pipeline for constructing clinically grounded yet flexible VP scenarios and a modular system for assessing trainee communication and adjusting VP responses in real time, while ensuring learner safety. We validated Adaptive-VP by simulating challenging patient conversations. Automated evaluation using a corpus from practicing nurses showed that our communication skill evaluation mechanism reflected real-world proficiency levels. Expert nurses further confirmed that Adaptive-VP produced more natural and realistic interactions than existing approaches, demonstrating its potential as a scalable and effective tool for nursing communication training.