Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utilizing AI for Aviation Post-Accident Analysis Classification (2506.00169v1)

Published 30 May 2025 in cs.AI

Abstract: The volume of textual data available in aviation safety reports presents a challenge for timely and accurate analysis. This paper examines how AI and, specifically, NLP can automate the process of extracting valuable insights from this data, ultimately enhancing aviation safety. The paper reviews ongoing efforts focused on the application of NLP and deep learning to aviation safety reports, with the goal of classifying the level of damage to an aircraft and identifying the phase of flight during which safety occurrences happen. Additionally, the paper explores the use of Topic Modeling (TM) to uncover latent thematic structures within aviation incident reports, aiming to identify recurring patterns and potential areas for safety improvement. The paper compares and contrasts the performance of various deep learning models and TM techniques applied to datasets from the National Transportation Safety Board (NTSB) and the Australian Transport Safety Bureau (ATSB), as well as the Aviation Safety Network (ASN), discussing the impact of dataset size and source on the accuracy of the analysis. The findings demonstrate that both NLP and deep learning, as well as TM, can significantly improve the efficiency and accuracy of aviation safety analysis, paving the way for more proactive safety management and risk mitigation strategies.

Summary

We haven't generated a summary for this paper yet.