Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Attribution from First Principles (2505.24729v1)

Published 30 May 2025 in cs.LG

Abstract: Feature attribution methods are a popular approach to explain the behavior of machine learning models. They assign importance scores to each input feature, quantifying their influence on the model's prediction. However, evaluating these methods empirically remains a significant challenge. To bypass this shortcoming, several prior works have proposed axiomatic frameworks that any feature attribution method should satisfy. In this work, we argue that such axioms are often too restrictive, and propose in response a new feature attribution framework, built from the ground up. Rather than imposing axioms, we start by defining attributions for the simplest possible models, i.e., indicator functions, and use these as building blocks for more complex models. We then show that one recovers several existing attribution methods, depending on the choice of atomic attribution. Subsequently, we derive closed-form expressions for attribution of deep ReLU networks, and take a step toward the optimization of evaluation metrics with respect to feature attributions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Magamed Taimeskhanov (2 papers)
  2. Damien Garreau (25 papers)

Summary

We haven't generated a summary for this paper yet.