Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive posterior sampling from non-stationnary Gaussian process priors via Diffusion models with application to climate data (2505.24556v1)

Published 23 May 2025 in stat.ML and cs.LG

Abstract: Bayesian models based on Gaussian processes (GPs) offer a flexible framework to predict spatially distributed variables with uncertainty. But the use of nonstationary priors, often necessary for capturing complex spatial patterns, makes sampling from the predictive posterior distribution (PPD) computationally intractable. In this paper, we propose a two-step approach based on diffusion generative models (DGMs) to mimic PPDs associated with non-stationary GP priors: we replace the GP prior by a DGM surrogate, and leverage recent advances on training-free guidance algorithms for DGMs to sample from the desired posterior distribution. We apply our approach to a rich non-stationary GP prior from which exact posterior sampling is untractable and validate that the issuing distributions are close to their GP counterpart using several statistical metrics. We also demonstrate how one can fine-tune the trained DGMs to target specific parts of the GP prior. Finally we apply the proposed approach to solve inverse problems arising in environmental sciences, thus yielding state-of-the-art predictions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets