Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer (2505.24378v1)

Published 30 May 2025 in cs.LG and cs.AI

Abstract: Despite recent advancements in offline multi-task reinforcement learning (MTRL) have harnessed the powerful capabilities of the Transformer architecture, most approaches focus on a limited number of tasks, with scaling to extremely massive tasks remaining a formidable challenge. In this paper, we first revisit the key impact of task numbers on current MTRL method, and further reveal that naively expanding the parameters proves insufficient to counteract the performance degradation as the number of tasks escalates. Building upon these insights, we propose M3DT, a novel mixture-of-experts (MoE) framework that tackles task scalability by further unlocking the model's parameter scalability. Specifically, we enhance both the architecture and the optimization of the agent, where we strengthen the Decision Transformer (DT) backbone with MoE to reduce task load on parameter subsets, and introduce a three-stage training mechanism to facilitate efficient training with optimal performance. Experimental results show that, by increasing the number of experts, M3DT not only consistently enhances its performance as model expansion on the fixed task numbers, but also exhibits remarkable task scalability, successfully extending to 160 tasks with superior performance.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com