Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing LLM-Based Code Generation with Complexity Metrics: A Feedback-Driven Approach (2505.23953v1)

Published 29 May 2025 in cs.SE and cs.AI

Abstract: Automatic code generation has gained significant momentum with the advent of LLMs such as GPT-4. Although many studies focus on improving the effectiveness of LLMs for code generation, very limited work tries to understand the generated code's characteristics and leverage that to improve failed cases. In this paper, as the most straightforward characteristic of code, we investigate the relationship between code complexity and the success of LLM generated code. Using a large set of standard complexity metrics, we first conduct an empirical analysis to explore their correlation with LLM's performance on code generation (i.e., Pass@1). Using logistic regression models, we identify which complexity metrics are most predictive of code correctness. Building on these findings, we propose an iterative feedback method, where LLMs are prompted to generate correct code based on complexity metrics from previous failed outputs. We validate our approach across multiple benchmarks (i.e., HumanEval, MBPP, LeetCode, and BigCodeBench) and various LLMs (i.e., GPT-4o, GPT-3.5 Turbo, Llama 3.1, and GPT-o3 mini), comparing the results with two baseline methods: (a) zero-shot generation, and (b) iterative execution-based feedback without our code complexity insights. Experiment results show that our approach makes notable improvements, particularly with a smaller LLM (GPT3.5 Turbo), where, e.g., Pass@1 increased by 35.71% compared to the baseline's improvement of 12.5% on the HumanEval dataset. The study expands experiments to BigCodeBench and integrates the method with the Reflexion code generation agent, leading to Pass@1 improvements of 20% (GPT-4o) and 23.07% (GPT-o3 mini). The results highlight that complexity-aware feedback enhances both direct LLM prompting and agent-based workflows.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com