Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TSENOR: Highly-Efficient Algorithm for Finding Transposable N:M Sparse Masks (2505.23949v1)

Published 29 May 2025 in cs.LG and cs.AI

Abstract: Network pruning reduces the computational requirements of large neural networks, with N:M sparsity -- retaining only N out of every M consecutive weights -- offering a compelling balance between compressed model quality and hardware acceleration. However, N:M sparsity only accelerates forward-pass computations, as N:M patterns are not preserved during matrix transposition, limiting efficiency during training where both passes are computationally intensive. While transposable N:M sparsity has been proposed to address this limitation, existing methods for finding transposable N:M sparse masks either fail to scale to large models or are restricted to M=4 which results in suboptimal compression-accuracy trade-off. We introduce an efficient solver for transposable N:M masks that scales to billion-parameter models. We formulate mask generation as optimal transport problems and solve through entropy regularization and Dykstra's algorithm, followed by a rounding procedure. Our tensor-based implementation exploits GPU parallelism, achieving up to 100x speedup with only 1-10% error compared to existing methods. Our approach can be integrated with layer-wise N:M pruning frameworks including Wanda, SparseGPT and ALPS to produce transposable N:M sparse models with arbitrary N:M values. Experiments show that LLaMA3.2-8B with transposable 16:32 sparsity maintains performance close to its standard N:M counterpart and outperforms standard 2:4 sparse model, showing the practical value of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiang Meng (21 papers)
  2. Mehdi Makni (4 papers)
  3. Rahul Mazumder (80 papers)

Summary

We haven't generated a summary for this paper yet.