Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting In-Context Learning in LLMs Through the Lens of Classical Supervised Learning (2505.23783v1)

Published 22 May 2025 in stat.ML, cs.AI, cs.CL, and cs.LG

Abstract: In-Context Learning (ICL) allows LLMs to adapt to new tasks with just a few examples, but their predictions often suffer from systematic biases, leading to unstable performances in classification. While calibration techniques are proposed to mitigate these biases, we show that, in the logit space, many of these methods are equivalent to merely shifting the LLM's decision boundary without having the ability to alter its orientation. This proves inadequate when biases cause the LLM to be severely misdirected. To address these limitations and provide a unifying framework, we propose Supervised Calibration (SC), a loss-minimization based framework which learns an optimal, per-class affine transformation of the LLM's predictive probabilities in the logit space without requiring external data beyond the context. By using a more expressive functional class, SC not only subsumes many existing calibration methods in ICL as special cases, but also enables the ability to alter and even completely reverse the orientation of the LLM's decision boundary. Furthermore, SC's loss-based nature facilitates the seamless integration of two purpose-built regularization techniques: context-invariance and directional trust-region. The former is designed to tackle the instability issue in ICL, while the latter controls the degree of calibration. Finally, SC delivers state-of-the-art performance over calibration baselines in the 4-shot, 8-shot, and 16-shot settings across all nine datasets for Mistral-7B-Instruct-v0.3, LLaMA-2-7B-chat, and Qwen2-7B-Instruct.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Korel Gundem (2 papers)
  2. Juncheng Dong (18 papers)
  3. Dennis Zhang (1 paper)
  4. Vahid Tarokh (144 papers)
  5. Zhengling Qi (37 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets