Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
34 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
115 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
148 tokens/sec
2000 character limit reached

On the Convergence Analysis of Muon (2505.23737v1)

Published 29 May 2025 in stat.ML, cs.IT, cs.LG, math.IT, and math.OC

Abstract: The majority of parameters in neural networks are naturally represented as matrices. However, most commonly used optimizers treat these matrix parameters as flattened vectors during optimization, potentially overlooking their inherent structural properties. Recently, an optimizer called Muon has been proposed, specifically designed to optimize matrix-structured parameters. Extensive empirical evidence shows that Muon can significantly outperform traditional optimizers when training neural networks. Nonetheless, the theoretical understanding of Muon's convergence behavior and the reasons behind its superior performance remain limited. In this work, we present a comprehensive convergence rate analysis of Muon and its comparison with Gradient Descent (GD). We further characterize the conditions under which Muon can outperform GD. Our theoretical results reveal that Muon can benefit from the low-rank and approximate blockwise diagonal structure of Hessian matrices -- phenomena widely observed in practical neural network training. Our experimental results support and corroborate the theoretical findings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.