Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Efficient Quantum Approximate $k$NN Algorithm via Granular-Ball Computing (2505.23066v1)

Published 29 May 2025 in quant-ph, cs.AI, and cs.LG

Abstract: High time complexity is one of the biggest challenges faced by $k$-Nearest Neighbors ($k$NN). Although current classical and quantum $k$NN algorithms have made some improvements, they still have a speed bottleneck when facing large amounts of data. To address this issue, we propose an innovative algorithm called Granular-Ball based Quantum $k$NN(GB-Q$k$NN). This approach achieves higher efficiency by first employing granular-balls, which reduces the data size needed to processed. The search process is then accelerated by adopting a Hierarchical Navigable Small World (HNSW) method. Moreover, we optimize the time-consuming steps, such as distance calculation, of the HNSW via quantization, further reducing the time complexity of the construct and search process. By combining the use of granular-balls and quantization of the HNSW method, our approach manages to take advantage of these treatments and significantly reduces the time complexity of the $k$NN-like algorithms, as revealed by a comprehensive complexity analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.