Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operationalizing CaMeL: Strengthening LLM Defenses for Enterprise Deployment (2505.22852v1)

Published 28 May 2025 in cs.CR and cs.AI

Abstract: CaMeL (Capabilities for Machine Learning) introduces a capability-based sandbox to mitigate prompt injection attacks in LLM agents. While effective, CaMeL assumes a trusted user prompt, omits side-channel concerns, and incurs performance tradeoffs due to its dual-LLM design. This response identifies these issues and proposes engineering improvements to expand CaMeL's threat coverage and operational usability. We introduce: (1) prompt screening for initial inputs, (2) output auditing to detect instruction leakage, (3) a tiered-risk access model to balance usability and control, and (4) a verified intermediate language for formal guarantees. Together, these upgrades align CaMeL with best practices in enterprise security and support scalable deployment.

Summary

We haven't generated a summary for this paper yet.