Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Cues Support Robust Turn-taking Prediction in Noise (2505.22088v1)

Published 28 May 2025 in cs.SD, cs.CL, and eess.AS

Abstract: Accurate predictive turn-taking models (PTTMs) are essential for naturalistic human-robot interaction. However, little is known about their performance in noise. This study therefore explores PTTM performance in types of noise likely to be encountered once deployed. Our analyses reveal PTTMs are highly sensitive to noise. Hold/shift accuracy drops from 84% in clean speech to just 52% in 10 dB music noise. Training with noisy data enables a multimodal PTTM, which includes visual features to better exploit visual cues, with 72% accuracy in 10 dB music noise. The multimodal PTTM outperforms the audio-only PTTM across all noise types and SNRs, highlighting its ability to exploit visual cues; however, this does not always generalise to new types of noise. Analysis also reveals that successful training relies on accurate transcription, limiting the use of ASR-derived transcriptions to clean conditions. We make code publicly available for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sam O'Connor Russell (2 papers)
  2. Naomi Harte (20 papers)

Summary

We haven't generated a summary for this paper yet.