Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging GANs for citation intent classification and its impact on citation network analysis (2505.21162v1)

Published 27 May 2025 in cs.DL, cs.CL, and cs.SI

Abstract: Citations play a fundamental role in the scientific ecosystem, serving as a foundation for tracking the flow of knowledge, acknowledging prior work, and assessing scholarly influence. In scientometrics, they are also central to the construction of quantitative indicators. Not all citations, however, serve the same function: some provide background, others introduce methods, or compare results. Therefore, understanding citation intent allows for a more nuanced interpretation of scientific impact. In this paper, we adopted a GAN-based method to classify citation intents. Our results revealed that the proposed method achieves competitive classification performance, closely matching state-of-the-art results with substantially fewer parameters. This demonstrates the effectiveness and efficiency of leveraging GAN architectures combined with contextual embeddings in intent classification task. We also investigated whether filtering citation intents affects the centrality of papers in citation networks. Analyzing the network constructed from the unArXiv dataset, we found that paper rankings can be significantly influenced by citation intent. All four centrality metrics examined- degree, PageRank, closeness, and betweenness - were sensitive to the filtering of citation types. The betweenness centrality displayed the greatest sensitivity, showing substantial changes in ranking when specific citation intents were removed.

Summary

We haven't generated a summary for this paper yet.