Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MetaSlot: Break Through the Fixed Number of Slots in Object-Centric Learning (2505.20772v1)

Published 27 May 2025 in cs.CV and cs.LG

Abstract: Learning object-level, structured representations is widely regarded as a key to better generalization in vision and underpins the design of next-generation Pre-trained Vision Models (PVMs). Mainstream Object-Centric Learning (OCL) methods adopt Slot Attention or its variants to iteratively aggregate objects' super-pixels into a fixed set of query feature vectors, termed slots. However, their reliance on a static slot count leads to an object being represented as multiple parts when the number of objects varies. We introduce MetaSlot, a plug-and-play Slot Attention variant that adapts to variable object counts. MetaSlot (i) maintains a codebook that holds prototypes of objects in a dataset by vector-quantizing the resulting slot representations; (ii) removes duplicate slots from the traditionally aggregated slots by quantizing them with the codebook; and (iii) injects progressively weaker noise into the Slot Attention iterations to accelerate and stabilize the aggregation. MetaSlot is a general Slot Attention variant that can be seamlessly integrated into existing OCL architectures. Across multiple public datasets and tasks--including object discovery and recognition--models equipped with MetaSlot achieve significant performance gains and markedly interpretable slot representations, compared with existing Slot Attention variants.

Summary

We haven't generated a summary for this paper yet.