Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paths Not Taken: Understanding and Mending the Multilingual Factual Recall Pipeline (2505.20546v2)

Published 26 May 2025 in cs.CL

Abstract: Multilingual LLMs often exhibit factual inconsistencies across languages, with significantly better performance in factual recall tasks in English than in other languages. The causes of these failures, however, remain poorly understood. Using mechanistic analysis techniques, we uncover the underlying pipeline that LLMs employ, which involves using the English-centric factual recall mechanism to process multilingual queries and then translating English answers back into the target language. We identify two primary sources of error: insufficient engagement of the reliable English-centric mechanism for factual recall, and incorrect translation from English back into the target language for the final answer. To address these vulnerabilities, we introduce two vector interventions, both independent of languages and datasets, to redirect the model toward better internal paths for higher factual consistency. Our interventions combined increase the recall accuracy by over 35 percent for the lowest-performing language. Our findings demonstrate how mechanistic insights can be used to unlock latent multilingual capabilities in LLMs.

Summary

We haven't generated a summary for this paper yet.