Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BRIT: Bidirectional Retrieval over Unified Image-Text Graph (2505.18450v1)

Published 24 May 2025 in cs.CL

Abstract: Retrieval-Augmented Generation (RAG) has emerged as a promising technique to enhance the quality and relevance of responses generated by LLMs. While recent advancements have mainly focused on improving RAG for text-based queries, RAG on multi-modal documents containing both texts and images has not been fully explored. Especially when fine-tuning does not work. This paper proposes BRIT, a novel multi-modal RAG framework that effectively unifies various text-image connections in the document into a multi-modal graph and retrieves the texts and images as a query-specific sub-graph. By traversing both image-to-text and text-to-image paths in the graph, BRIT retrieve not only directly query-relevant images and texts but also further relevant contents to answering complex cross-modal multi-hop questions. To evaluate the effectiveness of BRIT, we introduce MM-RAG test set specifically designed for multi-modal question answering tasks that require to understand the text-image relations. Our comprehensive experiments demonstrate the superiority of BRIT, highlighting its ability to handle cross-modal questions on the multi-modal documents.

Summary

We haven't generated a summary for this paper yet.