Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rates of convergence in the Free Multiplicative Central Limit Theorem (2505.18348v2)

Published 23 May 2025 in math.OA and math.PR

Abstract: We provide the first quantitative estimates for the rate of convergence in the free multiplicative central limit theorem (CLT), in terms of the Kolmogorov and $r$-Wasserstein distances for $r \geq 1$. While the free additive CLT has been thoroughly studied, including convergence rates, the multiplicative setting remained open in this regard. We consider products of the form $$ \pi_n{g,n{-1/2}x} := g\left(\frac{x_1}{\sqrt{n}}\right) \cdots g\left(\frac{x_n}{\sqrt{n}}\right),$$ where $x_1, \dots, x_n$ are freely independent self-adjoint operators with common variance $\sigma2$ and $g \colon \mathbb{R} \to \mathbb{C}$ satisfies certain regularity and integrability conditions. We quantify the deviation of the singular value distribution of $\pi_n{g,x}$ from the free positive semicircular law, with bounds depending only on the moments of the underlying variables. Additionally, we present a combinatorial proof of the free multiplicative CLT that extends to the unbounded setting.

Summary

We haven't generated a summary for this paper yet.