Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mahalanobis++: Improving OOD Detection via Feature Normalization (2505.18032v1)

Published 23 May 2025 in cs.LG and cs.CV

Abstract: Detecting out-of-distribution (OOD) examples is an important task for deploying reliable machine learning models in safety-critial applications. While post-hoc methods based on the Mahalanobis distance applied to pre-logit features are among the most effective for ImageNet-scale OOD detection, their performance varies significantly across models. We connect this inconsistency to strong variations in feature norms, indicating severe violations of the Gaussian assumption underlying the Mahalanobis distance estimation. We show that simple $\ell_2$-normalization of the features mitigates this problem effectively, aligning better with the premise of normally distributed data with shared covariance matrix. Extensive experiments on 44 models across diverse architectures and pretraining schemes show that $\ell_2$-normalization improves the conventional Mahalanobis distance-based approaches significantly and consistently, and outperforms other recently proposed OOD detection methods.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com