Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Traffic Accident Anticipation with Feature Reuse (2505.17449v1)

Published 23 May 2025 in cs.CV

Abstract: This paper addresses the problem of anticipating traffic accidents, which aims to forecast potential accidents before they happen. Real-time anticipation is crucial for safe autonomous driving, yet most methods rely on computationally heavy modules like optical flow and intermediate feature extractors, making real-world deployment challenging. In this paper, we thus introduce RARE (Real-time Accident anticipation with Reused Embeddings), a lightweight framework that capitalizes on intermediate features from a single pre-trained object detector. By eliminating additional feature-extraction pipelines, RARE significantly reduces latency. Furthermore, we introduce a novel Attention Score Ranking Loss, which prioritizes higher attention on accident-related objects over non-relevant ones. This loss enhances both accuracy and interpretability. RARE demonstrates a 4-8 times speedup over existing approaches on the DAD and CCD benchmarks, achieving a latency of 13.6ms per frame (73.3 FPS) on an RTX 6000. Moreover, despite its reduced complexity, it attains state-of-the-art Average Precision and reliably anticipates imminent collisions in real time. These results highlight RARE's potential for safety-critical applications where timely and explainable anticipation is essential.

Summary

We haven't generated a summary for this paper yet.