Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signals from the Floods: AI-Driven Disaster Analysis through Multi-Source Data Fusion (2505.17038v1)

Published 10 May 2025 in cs.CL and cs.SI

Abstract: Massive and diverse web data are increasingly vital for government disaster response, as demonstrated by the 2022 floods in New South Wales (NSW), Australia. This study examines how X (formerly Twitter) and public inquiry submissions provide insights into public behaviour during crises. We analyse more than 55,000 flood-related tweets and 1,450 submissions to identify behavioural patterns during extreme weather events. While social media posts are short and fragmented, inquiry submissions are detailed, multi-page documents offering structured insights. Our methodology integrates Latent Dirichlet Allocation (LDA) for topic modelling with LLMs to enhance semantic understanding. LDA reveals distinct opinions and geographic patterns, while LLMs improve filtering by identifying flood-relevant tweets using public submissions as a reference. This Relevance Index method reduces noise and prioritizes actionable content, improving situational awareness for emergency responders. By combining these complementary data streams, our approach introduces a novel AI-driven method to refine crisis-related social media content, improve real-time disaster response, and inform long-term resilience planning.

Summary

We haven't generated a summary for this paper yet.