Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on the Application of Large Language Models in Scenario-Based Testing of Automated Driving Systems (2505.16587v1)

Published 22 May 2025 in cs.SE

Abstract: The safety and reliability of Automated Driving Systems (ADSs) must be validated prior to large-scale deployment. Among existing validation approaches, scenario-based testing has been regarded as a promising method to improve testing efficiency and reduce associated costs. Recently, the emergence of LLMs has introduced new opportunities to reinforce this approach. While an increasing number of studies have explored the use of LLMs in the field of automated driving, a dedicated review focusing on their application within scenario-based testing remains absent. This survey addresses this gap by systematically categorizing the roles played by LLMs across various phased of scenario-based testing, drawing from both academic research and industrial practice. In addition, key characteristics of LLMs and corresponding usage strategies are comprehensively summarized. The paper concludes by outlining five open challenges and potential research directions. To support ongoing research efforts, a continuously updated repository of recent advancements and relevant open-source tools is made available at: https://github.com/ftgTUGraz/LLM4ADSTest.

Summary

We haven't generated a summary for this paper yet.