Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces (2505.16116v1)

Published 22 May 2025 in math.FA, math.AP, and math.CA

Abstract: Let $\Lambda_s$ denote the Lipschitz space of order $s\in(0,\infty)$ on $\mathbb{R}n$, which consists of all $f\in\mathfrak{C}\cap L\infty$ such that, for some constant $L\in(0,\infty)$ and some integer $r\in(s,\infty)$, \begin{equation*} \label{0-1}\Delta_r f(x,y): =\sup_{|h|\leq y} |\Delta_hr f(x)|\leq L ys, \ x\in\mathbb{R}n, \ y \in(0, 1]. \end{equation*} Here (and throughout the article) $\mathfrak{C}$ refers to continuous functions, and $\Delta_hr$ is the usual $r$-th order difference operator with step $h\in\mathbb{R}n$. For each $f\in \Lambda_s$ and $\varepsilon\in(0,L)$, let $ S(f,\varepsilon):= { (x,y)\in\mathbb{R}n\times [0,1]: \frac {\Delta_r f(x,y)}{ys}>\varepsilon}$, and let $\mu: \mathcal{B}(\mathbb{R}+{n+1})\to [0,\infty]$ be a suitably defined nonnegative extended real-valued function on the Borel $\sigma$-algebra of subsets of $\mathbb{R}+{n+1}$. Let $\varepsilon(f)$ be the infimum of all $\varepsilon\in(0,\infty)$ such that $\mu(S(f,\varepsilon))<\infty$. The main target of this article is to characterize the distance from $f$ to a subspace $V\cap \Lambda_s$ of $\Lambda_s$ for various function spaces $V$ (including Sobolev, Besov--Triebel--Lizorkin, and Besov--Triebel--Lizorkin-type spaces) in terms of $\varepsilon(f)$, showing that \begin{equation*} \varepsilon(f)\sim \mathrm{dist} (f, V\cap \Lambda_s){\Lambda_s}: = \inf{g\in \Lambda_s\cap V} |f-g|_{\Lambda_s}.\end{equation*} Moreover, we present our results in a general framework based on quasi-normed lattices of function sequences $X$ and Daubechies $s$-Lipschitz $X$-based spaces.

Summary

We haven't generated a summary for this paper yet.