Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Predictability of the Madden-Julian Oscillation at Subseasonal Scales with Gaussian Process Models (2505.15934v1)

Published 21 May 2025 in math.NA, cs.NA, physics.ao-ph, and stat.ML

Abstract: The Madden--Julian Oscillation (MJO) is an influential climate phenomenon that plays a vital role in modulating global weather patterns. In spite of the improvement in MJO predictions made by machine learning algorithms, such as neural networks, most of them cannot provide the uncertainty levels in the MJO forecasts directly. To address this problem, we develop a nonparametric strategy based on Gaussian process (GP) models. We calibrate GPs using empirical correlations and we propose a posteriori covariance correction. Numerical experiments demonstrate that our model has better prediction skills than the ANN models for the first five lead days. Additionally, our posteriori covariance correction extends the probabilistic coverage by more than three weeks.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com