Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking data encoding methods in Quantum Machine Learning (2505.14295v1)

Published 20 May 2025 in quant-ph and cs.AI

Abstract: Data encoding plays a fundamental and distinctive role in Quantum Machine Learning (QML). While classical approaches process data directly as vectors, QML may require transforming classical data into quantum states through encoding circuits, known as quantum feature maps or quantum embeddings. This step leverages the inherently high-dimensional and non-linear nature of Hilbert space, enabling more efficient data separation in complex feature spaces that may be inaccessible to classical methods. This encoding part significantly affects the performance of the QML model, so it is important to choose the right encoding method for the dataset to be encoded. However, this choice is generally arbitrary, since there is no "universal" rule for knowing which encoding to choose based on a specific set of data. There are currently a variety of encoding methods using different quantum logic gates. We studied the most commonly used types of encoding methods and benchmarked them using different datasets.

Summary

We haven't generated a summary for this paper yet.